quarta-feira, 27 de setembro de 2017

Primeira Lei de Mendel

Primeira Lei de Mendel


A primeira lei de Mendel nos diz que os descendentes recebem um alelo do par de genes que determina uma característica
Gregor Johan Mendel foi um monge agostiniano nascido no ano de 1822 que se interessou em explicar como as características dos pais são transmitidas a seus descendentes. Conhecido como o pai da genética, Mendel realizou todas as suas pesquisas sobre hereditariedade com ervilhas de cheiro (Pisum sativa), escolha que foi uma das razões de seu sucesso com suas pesquisas, pois essa leguminosa apresenta diversas vantagens como fácil cultivoprodução de grande quantidade de sementesciclo de vida curto, além de características contrastantes e de fácil identificação. Outro fato que contribuiu para o sucesso das pesquisas de Mendel foi que ele analisou apenas uma característica de cada vez, sem se preocupar com as demais características.
Em seus experimentos, Mendel teve o cuidado de utilizar apenas plantas de linhagens puras, por exemplo, plantas de sementes verdes que só originassem sementes verdes e plantas de sementes amarelas que só originassem sementes amarelas. Você deve estar se perguntando, como Mendel sabia que as plantas eram puras? Pois bem, para que ele tivesse certeza de qual planta era pura, ele as observava durante seis gerações, período de aproximadamente dois anos. Se durante essas gerações as plantas originassem indivíduos diferentes da planta inicial, elas não eram consideradas puras, mas se ocorresse o contrário e elas só originassem descendentes com as mesmas características da planta inicial, eram consideradas puras.  
Imagem ilustrando como Mendel cruzou as ervilhas
Uma vez constatado que as plantas eram puras, Mendel escolheu uma característica, por exemplo, plantas puras de sementes amarelas com plantas puras de sementes verdes, e realizou o cruzamento. Essa primeira geração foi chamada de geração parental ou geração P. Como resultado desse cruzamento, Mendel obteve todas as sementes de cor amarela e a essa geração denominou de geração F1. Os indivíduos obtidos nesse cruzamento foram chamados por Mendel de híbridos, pois eles descendiam de pais com características diferentes.
Em seguida, Mendel realizou uma autofecundação entre os indivíduos da geração F1, chamando essa segunda geração de geração F2. Como resultado dessa autofecundação, Mendel obteve três sementes amarelas e uma semente verde (3:1). A partir dos resultados obtidos, Mendel concluiu que como a cor verde não apareceu na geração F1, mas reapareceu na geração F2, as sementes verdes tinham um fator que era recessivo, enquanto as sementes amarelas tinham um fator dominante. Por esse motivo, Mendel chamou as sementes verdes de recessivas e as sementes amarelas de dominantes.
Em diversos outros experimentos, Mendel observou características diferentes na planta, como altura da planta, cor da flor, cor da casca da semente, e notou que em todas elas algumas características sempre se sobressaíam às outras.
Diante desses resultados, Mendel pôde concluir que:
→ Cada ser vivo é único e possui um par de genes para cada característica;
 → As características hereditárias são herdadas metade do pai e metade da mãe;
→ Os genes são transmitidos através dos genes;
→ Os descendentes herdarão apenas um gene de cada característica de seus pais, ou seja, para uma determinada característica, haverá apenas um gene do par, tanto da mãe quanto do pai.
Dessa forma, podemos enunciar a primeira lei de Mendel, também chamada de lei da segregação dos fatores da seguinte forma: “Todas as características de um indivíduo são determinadas por genes que se segregam, separam-se, durante a formação dos gametas, sendo que, assim, pai e mãe transmitem apenas um gene para seus descendentes”.

Segunda Lei de Mendel

Segunda Lei de Mendel

Resultado de imagem para diibridismo

A segunda lei de Mendel ou também enunciada por diibridismo, refere-se à segregação independente dos fatores, isto é, a separação de dois ou mais pares de genes alelos localizados em diferentes pares de cromossomos homólogos, para formação dos gametas. 
O princípio para essa segregação tem suporte na anáfase I da divisão meiótica, instante em que ocorre o afastamento dos cromossomos homólogos (duplicados), paralelamente dispostos ao longo do fuso meiótico celular.


Dessa forma, a proposição da segunda lei de Mendel, tem como fundamento a análise dos resultados decorrentes às possibilidades que envolvem não mais o estudo de uma característica isolada (Primeira Lei de Mendel), mas o comportamento fenotípico envolvendo duas ou mais características, em conseqüência da probabilidade (combinação) de agrupamentos distintos quanto à separação dos fatores (genes alelos / genótipo) na formação dos gametas. 
Segue abaixo um exemplo prático da Segunda lei de Mendel: 
Do cruzamento de ervilhas com características puras, em homozigose dominante e recessiva respectivamente para a cor da semente (amarela e verde) e para a textura da semente (lisa e rugosa), temos a seguinte representação para a geração parental e seus gametas: 
RRVV (semente lisa e amarela) x rrvv (semente rugosa e verde) 
Gameta → RV Gameta → rv 
Desse cruzamento são originados exemplares vegetais de ervilha 100% heterozigóticas RrVv, com característica essencialmente lisa e amarela (geração F1 – primeira geração filial). 
A partir do cruzamento entre organismos da geração F1, são formados tipos diferentes de gametas e combinações diversas para constituição dos indivíduos que irão surgir após a fecundação (geração F2). 
Tipos de gametas da geração F1 → RV, Rv, rV e rv 
Prováveis combinações entre os gametas:
9/16 → ervilhas com característica lisa e amarela; 
3/16 → ervilhas com característica lisa e verde; 
3/16 → ervilhas com característica rugosa e amarela; 
1/16 → ervilhas com característica rugosa e verde. 
Mendel concluiu que as características analisadas não dependiam uma das outras, portanto, são consideradas características independentes.


Proporção fenotípica obtida: